Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Structural and morphological qualities of InGaN grown via elevated pressures in MOCVD on AlN/Si(111) substrates

Identifieur interne : 000481 ( Main/Repository ); précédent : 000480; suivant : 000482

Structural and morphological qualities of InGaN grown via elevated pressures in MOCVD on AlN/Si(111) substrates

Auteurs : RBID : Pascal:13-0357954

Descripteurs français

English descriptors

Abstract

We examine the structural and morphological qualities of InxCa1-xN grown directly on AlN/Si(111) substrates by MOCVD as a function of growth pressure and temperature. The use of elevated pressures (up to 300 Torr) resulted in the suppression of InGaN phase separation and indium droplet formation allowing single phase, textured epitaxial (0002)-oriented InxGa1-xN to be grown on the highly mismatched substrates. Various indium compositions x, up to ∼0.4, can subsequently be achieved by adjusting the growth temperature over the range of 655 °C-795 °C. Increase in growth temperature reduces the indium composition x but is accompanied by a decrease in the FWHM of the (002)-ω and asymmetric (105)-ω rocking curves indicating lower crystallographic tilt and improved crystal quality. The reduction in tilt saturates at ∼705 °C. This corroborates with room-temperature photoluminescence (PL) measurements where PL is not detectable below ∼705 °C but emerges above this temperature and narrows in FWHM with further temperature increase. SEM shows that films grown at low pressure are compositionally and morphologically non-uniform, while films grown at elevated pressure are homogeneous, single phase and composed of densely packed, interconnected epitaxial islands, with lower temperature favouring a smaller island size. We conclude that while lower temperatures favour increased indium incorporation, the ensuing smaller island size and greater extent of island boundaries, arising from larger lattice mismatch and lower surface mobility of species, degrades crystal quality appreciably. Above 705 °C, improvement in crystallographic quality is limited by the AlN growth template and requires innovative MOCVD growth strategies.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0357954

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Structural and morphological qualities of InGaN grown via elevated pressures in MOCVD on AlN/Si(111) substrates</title>
<author>
<name>JIAN WEI HO</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Centre for Life Sciences, #05-01, 28 Medical Drive</s1>
<s2>Singapore 117456</s2>
<s3>SGP</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Singapour</country>
<wicri:noRegion>Singapore 117456</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Centre for Optoelectronics, Department of Electrical and Computer Engineering, National University of Singapore, Block E3 02-07, Engineering Drive 3</s1>
<s2>Singapore 119260</s2>
<s3>SGP</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Singapour</country>
<wicri:noRegion>Singapore 119260</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Institute of Materials Research and Engineering, Agency for Science Technology and Research (A*STAR), 3 Research Link</s1>
<s2>Singapore 117602</s2>
<s3>SGP</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Singapour</country>
<wicri:noRegion>Singapore 117602</wicri:noRegion>
</affiliation>
</author>
<author>
<name>LI ZHANG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Centre for Life Sciences, #05-01, 28 Medical Drive</s1>
<s2>Singapore 117456</s2>
<s3>SGP</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Singapour</country>
<wicri:noRegion>Singapore 117456</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Institute of Materials Research and Engineering, Agency for Science Technology and Research (A*STAR), 3 Research Link</s1>
<s2>Singapore 117602</s2>
<s3>SGP</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Singapour</country>
<wicri:noRegion>Singapore 117602</wicri:noRegion>
</affiliation>
</author>
<author>
<name>QIXUN WEE</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Centre for Optoelectronics, Department of Electrical and Computer Engineering, National University of Singapore, Block E3 02-07, Engineering Drive 3</s1>
<s2>Singapore 119260</s2>
<s3>SGP</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Singapour</country>
<wicri:noRegion>Singapore 119260</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Institute of Materials Research and Engineering, Agency for Science Technology and Research (A*STAR), 3 Research Link</s1>
<s2>Singapore 117602</s2>
<s3>SGP</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Singapour</country>
<wicri:noRegion>Singapore 117602</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Singapore-MIT Alliance, National University of Singapore, Block E4 04-10, 4 Engineering Drive 3</s1>
<s2>Singapore 117576</s2>
<s3>SGP</s3>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Singapour</country>
<wicri:noRegion>Singapore 117576</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tay, Andrew A O" uniqKey="Tay A">Andrew A. O. Tay</name>
<affiliation wicri:level="1">
<inist:fA14 i1="05">
<s1>Department of Mechanical Engineering, National University of Singapore, Block EA 07-08. 9 Engineering Drive 1</s1>
<s2>Singapore 117576</s2>
<s3>SGP</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Singapour</country>
<wicri:noRegion>Singapore 117576</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Heuken, Michael" uniqKey="Heuken M">Michael Heuken</name>
<affiliation wicri:level="1">
<inist:fA14 i1="06">
<s1>AIXTRON SE, Kaiserstr. 98</s1>
<s2>52134 Herzogenrath</s2>
<s3>DEU</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<wicri:noRegion>52134 Herzogenrath</wicri:noRegion>
<wicri:noRegion>Kaiserstr. 98</wicri:noRegion>
<wicri:noRegion>52134 Herzogenrath</wicri:noRegion>
</affiliation>
<affiliation wicri:level="3">
<inist:fA14 i1="07">
<s1>GaN Device Technology, RWTH Aachen University, Sommerfeldstr. 24</s1>
<s2>52074 Aachen</s2>
<s3>DEU</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Cologne</region>
<settlement type="city">Aix-la-Chapelle</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Chua, Soo Jin" uniqKey="Chua S">Soo-Jin Chua</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Centre for Optoelectronics, Department of Electrical and Computer Engineering, National University of Singapore, Block E3 02-07, Engineering Drive 3</s1>
<s2>Singapore 119260</s2>
<s3>SGP</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Singapour</country>
<wicri:noRegion>Singapore 119260</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Institute of Materials Research and Engineering, Agency for Science Technology and Research (A*STAR), 3 Research Link</s1>
<s2>Singapore 117602</s2>
<s3>SGP</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Singapour</country>
<wicri:noRegion>Singapore 117602</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Singapore-MIT Alliance, National University of Singapore, Block E4 04-10, 4 Engineering Drive 3</s1>
<s2>Singapore 117576</s2>
<s3>SGP</s3>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Singapour</country>
<wicri:noRegion>Singapore 117576</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="08">
<s1>Singapore-MIT Alliance for Research and Technology Centre, 1 CREATE Way, #10-01 CREATE Tower</s1>
<s2>Singapore 138602</s2>
<s3>SGP</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Singapour</country>
<wicri:noRegion>Singapore 138602</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0357954</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0357954 INIST</idno>
<idno type="RBID">Pascal:13-0357954</idno>
<idno type="wicri:Area/Main/Corpus">000467</idno>
<idno type="wicri:Area/Main/Repository">000481</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0022-0248</idno>
<title level="j" type="abbreviated">J. cryst. growth</title>
<title level="j" type="main">Journal of crystal growth</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>CVD</term>
<term>Crystal perfection</term>
<term>Crystal structure</term>
<term>Droplets</term>
<term>Epitaxial layers</term>
<term>Epitaxy</term>
<term>Growth mechanism</term>
<term>III-V compound</term>
<term>III-V semiconductors</term>
<term>Indium</term>
<term>Low pressure</term>
<term>MOCVD</term>
<term>Mismatch lattice</term>
<term>Organometallic compounds</term>
<term>Phase separation</term>
<term>Photoluminescence</term>
<term>Pressure effects</term>
<term>Rocking curve</term>
<term>Scanning electron microscopy</term>
<term>Temperature dependence</term>
<term>Temperature measurement</term>
<term>Template reaction</term>
<term>Thin films</term>
<term>XRD</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Méthode MOCVD</term>
<term>Mécanisme croissance</term>
<term>Séparation phase</term>
<term>Indium</term>
<term>Gouttelette</term>
<term>Epitaxie</term>
<term>Couche épitaxique</term>
<term>Dépendance température</term>
<term>Structure cristalline</term>
<term>Diagramme rotation</term>
<term>Diffraction RX</term>
<term>Perfection cristalline</term>
<term>Mesure température</term>
<term>Photoluminescence</term>
<term>Microscopie électronique balayage</term>
<term>Couche mince</term>
<term>Effet pression</term>
<term>Basse pression</term>
<term>Accommodation réseau</term>
<term>Semiconducteur III-V</term>
<term>Composé III-V</term>
<term>Réaction dirigée</term>
<term>Composé organométallique</term>
<term>Dépôt chimique phase vapeur</term>
<term>InGaN</term>
<term>Substrat silicium</term>
<term>Substrat AlN</term>
<term>InxGa1-xN</term>
<term>8115G</term>
<term>8110A</term>
<term>6475</term>
<term>6166</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We examine the structural and morphological qualities of In
<sub>x</sub>
Ca
<sub>1-x</sub>
N grown directly on AlN/Si(111) substrates by MOCVD as a function of growth pressure and temperature. The use of elevated pressures (up to 300 Torr) resulted in the suppression of InGaN phase separation and indium droplet formation allowing single phase, textured epitaxial (0002)-oriented In
<sub>x</sub>
Ga
<sub>1-x</sub>
N to be grown on the highly mismatched substrates. Various indium compositions x, up to ∼0.4, can subsequently be achieved by adjusting the growth temperature over the range of 655 °C-795 °C. Increase in growth temperature reduces the indium composition x but is accompanied by a decrease in the FWHM of the (002)-ω and asymmetric (105)-ω rocking curves indicating lower crystallographic tilt and improved crystal quality. The reduction in tilt saturates at ∼705 °C. This corroborates with room-temperature photoluminescence (PL) measurements where PL is not detectable below ∼705 °C but emerges above this temperature and narrows in FWHM with further temperature increase. SEM shows that films grown at low pressure are compositionally and morphologically non-uniform, while films grown at elevated pressure are homogeneous, single phase and composed of densely packed, interconnected epitaxial islands, with lower temperature favouring a smaller island size. We conclude that while lower temperatures favour increased indium incorporation, the ensuing smaller island size and greater extent of island boundaries, arising from larger lattice mismatch and lower surface mobility of species, degrades crystal quality appreciably. Above 705 °C, improvement in crystallographic quality is limited by the AlN growth template and requires innovative MOCVD growth strategies.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0022-0248</s0>
</fA01>
<fA02 i1="01">
<s0>JCRGAE</s0>
</fA02>
<fA03 i2="1">
<s0>J. cryst. growth</s0>
</fA03>
<fA05>
<s2>383</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Structural and morphological qualities of InGaN grown via elevated pressures in MOCVD on AlN/Si(111) substrates</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>JIAN WEI HO</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>LI ZHANG</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>QIXUN WEE</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>TAY (Andrew A. O.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>HEUKEN (Michael)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>CHUA (Soo-Jin)</s1>
</fA11>
<fA14 i1="01">
<s1>NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Centre for Life Sciences, #05-01, 28 Medical Drive</s1>
<s2>Singapore 117456</s2>
<s3>SGP</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Centre for Optoelectronics, Department of Electrical and Computer Engineering, National University of Singapore, Block E3 02-07, Engineering Drive 3</s1>
<s2>Singapore 119260</s2>
<s3>SGP</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Institute of Materials Research and Engineering, Agency for Science Technology and Research (A*STAR), 3 Research Link</s1>
<s2>Singapore 117602</s2>
<s3>SGP</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Singapore-MIT Alliance, National University of Singapore, Block E4 04-10, 4 Engineering Drive 3</s1>
<s2>Singapore 117576</s2>
<s3>SGP</s3>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>Department of Mechanical Engineering, National University of Singapore, Block EA 07-08. 9 Engineering Drive 1</s1>
<s2>Singapore 117576</s2>
<s3>SGP</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="06">
<s1>AIXTRON SE, Kaiserstr. 98</s1>
<s2>52134 Herzogenrath</s2>
<s3>DEU</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="07">
<s1>GaN Device Technology, RWTH Aachen University, Sommerfeldstr. 24</s1>
<s2>52074 Aachen</s2>
<s3>DEU</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="08">
<s1>Singapore-MIT Alliance for Research and Technology Centre, 1 CREATE Way, #10-01 CREATE Tower</s1>
<s2>Singapore 138602</s2>
<s3>SGP</s3>
<sZ>6 aut.</sZ>
</fA14>
<fA20>
<s1>1-8</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>13507</s2>
<s5>354000501058170010</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>38 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0357954</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of crystal growth</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>We examine the structural and morphological qualities of In
<sub>x</sub>
Ca
<sub>1-x</sub>
N grown directly on AlN/Si(111) substrates by MOCVD as a function of growth pressure and temperature. The use of elevated pressures (up to 300 Torr) resulted in the suppression of InGaN phase separation and indium droplet formation allowing single phase, textured epitaxial (0002)-oriented In
<sub>x</sub>
Ga
<sub>1-x</sub>
N to be grown on the highly mismatched substrates. Various indium compositions x, up to ∼0.4, can subsequently be achieved by adjusting the growth temperature over the range of 655 °C-795 °C. Increase in growth temperature reduces the indium composition x but is accompanied by a decrease in the FWHM of the (002)-ω and asymmetric (105)-ω rocking curves indicating lower crystallographic tilt and improved crystal quality. The reduction in tilt saturates at ∼705 °C. This corroborates with room-temperature photoluminescence (PL) measurements where PL is not detectable below ∼705 °C but emerges above this temperature and narrows in FWHM with further temperature increase. SEM shows that films grown at low pressure are compositionally and morphologically non-uniform, while films grown at elevated pressure are homogeneous, single phase and composed of densely packed, interconnected epitaxial islands, with lower temperature favouring a smaller island size. We conclude that while lower temperatures favour increased indium incorporation, the ensuing smaller island size and greater extent of island boundaries, arising from larger lattice mismatch and lower surface mobility of species, degrades crystal quality appreciably. Above 705 °C, improvement in crystallographic quality is limited by the AlN growth template and requires innovative MOCVD growth strategies.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A15G</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B80A10A</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B60D75</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B60A66</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Méthode MOCVD</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>MOCVD</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Mécanisme croissance</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Growth mechanism</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Mecanismo crecimiento</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Séparation phase</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Phase separation</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Indium</s0>
<s2>NC</s2>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Indium</s0>
<s2>NC</s2>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Gouttelette</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Droplets</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Epitaxie</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Epitaxy</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Couche épitaxique</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Epitaxial layers</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Dépendance température</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Temperature dependence</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Structure cristalline</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Crystal structure</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Diagramme rotation</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Rocking curve</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Diagrama rotación</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Diffraction RX</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>XRD</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Perfection cristalline</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Crystal perfection</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Perfección cristalina</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Mesure température</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Temperature measurement</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Photoluminescence</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Photoluminescence</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Microscopie électronique balayage</s0>
<s5>29</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Scanning electron microscopy</s0>
<s5>29</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Couche mince</s0>
<s5>30</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Thin films</s0>
<s5>30</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Effet pression</s0>
<s5>31</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Pressure effects</s0>
<s5>31</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Basse pression</s0>
<s5>32</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Low pressure</s0>
<s5>32</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Accommodation réseau</s0>
<s5>33</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Mismatch lattice</s0>
<s5>33</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Acomodación red</s0>
<s5>33</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
<s5>34</s5>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
<s5>34</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Composé III-V</s0>
<s5>35</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>III-V compound</s0>
<s5>35</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Compuesto III-V</s0>
<s5>35</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Réaction dirigée</s0>
<s5>36</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Template reaction</s0>
<s5>36</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Reacción dirigida</s0>
<s5>36</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>Composé organométallique</s0>
<s5>37</s5>
</fC03>
<fC03 i1="23" i2="3" l="ENG">
<s0>Organometallic compounds</s0>
<s5>37</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>Dépôt chimique phase vapeur</s0>
<s5>38</s5>
</fC03>
<fC03 i1="24" i2="3" l="ENG">
<s0>CVD</s0>
<s5>38</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>InGaN</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="26" i2="3" l="FRE">
<s0>Substrat silicium</s0>
<s4>INC</s4>
<s5>47</s5>
</fC03>
<fC03 i1="27" i2="3" l="FRE">
<s0>Substrat AlN</s0>
<s4>INC</s4>
<s5>48</s5>
</fC03>
<fC03 i1="28" i2="3" l="FRE">
<s0>InxGa1-xN</s0>
<s4>INC</s4>
<s5>49</s5>
</fC03>
<fC03 i1="29" i2="3" l="FRE">
<s0>8115G</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="30" i2="3" l="FRE">
<s0>8110A</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="31" i2="3" l="FRE">
<s0>6475</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="32" i2="3" l="FRE">
<s0>6166</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fN21>
<s1>336</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000481 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000481 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0357954
   |texte=   Structural and morphological qualities of InGaN grown via elevated pressures in MOCVD on AlN/Si(111) substrates
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024